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Notes on approximations for turbulent flows with 
large temperature differences 

By D. J. TRITTON 
Department of Aeronautical Engineering, Indian Institute of Science, Bangalore 

(Received 23 August 1960 and in revised form 5 May 1961) 

(i) The diffusion terms in the mean velocity and temperature equations of 
turbulent flow are analysed to decide when variations of fluid properties can 
produce appreciable errors. 

(ii) A theoretical demonstration is given that in the mean-flow continuity 
equation for a gas the error in assuming constant density is small if the flow is 
turbulent, even when the temperature variations are large. 

(iii) Separate discussion is given of the case of local heat sources in turbulence, 
as large errors can occur there. 

1. Introduction 
In  theoretical work on low-speed flows with temperaturevariations it is common 

to suppose that all temperature differences are small enough for changes in fluid 
properties to be neglected. In  experimental work the supposition is frequently 
not fulfilled. In  gas flows, in particular, temperature differences may well be 
insufficiently small compared with the absolute temperature for density varia- 
tions to have no effect. In  any fluid, variations of viscosity and thermal con- 
ductivity may be sizable. These notes consider, for turbulent flows, some aspects 
of the errors so caused. They do not give corrections-the complexity of the 
accurate equations precludes t h a t b u t  discuss the magnitude of the errors for 
cases in which some analysis is necessary before this can be properly estimated. 
It might be thought, for instance, that for mean flows, where the direct action of 
molecular effects is negligible, temperature variation of viscosity would not 
matter, but this is seen in 3 2 to be fallacious. Then, in $9 3 and 4, attention is 
drawn to a respect in which theory fails less than would appear at first sight and 
also to a situation in which there is particular danger of large errors. 

The notation is standard. A n  overbar (-) indicates a mean value and (') the 
difference between the instantaneous value and the mean value. 

The estimation of errors is just a matter of writing the relative sizes of retained 
and neglected terms in terms of temperature, velocity, and length scales. During 
this procedure, it must be noted that there are two temperature scales (and, 
correspondingly, two density scales); the scale of is that of the absolute tem- 
perature To, whereas that of T', or of when it appears as a gradient, is AT, the 
difference between extremes of temperature. Strictly, a further distinction 
should be made between these last two and, similarly, between the scales of mean 
and fluctuating velocities, but this is left out of account; otherwise it is necessary 
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to present the analysis somewhat differently for different flows; the distinctions 
are unimportant in the end. The use of a single velocity scale, U, further does 
not allow for flows such as a wake in which the mean velocity difference has a 
smaller scale than the mean velocity, but it can be shown that the situations in 
which the results are different are of no physical importance. For length scales 
we distinguish between longitudinal gradients having scale L and transverse 
gradients having scale 6, as the results are of interest mainly for boundary-layer- 
type flows. (These apply, of course, to gradients of mean quantities; we shall be 
meeting a turbulence length scale in $ 2 . )  

2. Mean velocity and temperature equations with variablefluid properties 
Consider the term 

a 
ax,( 2) A = -  p- 

in the mean velocity equation. If ,u varies with temperature, 

B C 

C will behave, at  least so far as the subsequent order of magnitude analysis is 
concerned, similarly to 

aT au. T dP 
P dT 

a--> where a = - - (a function of T ) .  T ax, ax, ' 

Now 

and the length scale of the second part is a turbulent, not a mean flow, one. 
Consequently A can be much larger when p is variable than when it is constant. 
In  fact C _N a,uATU/Toh2, where h is the dissipation-length parameter. [There are 
two assumptions involved in this stage. First, no distinction is being made 
between the kinetic energy and T'2 dissipation-length parameters. Hence the 
argument as it stands does not cover the case of Prandtl number very different 
from 1, though it could be modified to do so (nor is the configuration considered 
in $ 4 covered by this). Secondly, it is assumed that the correlation 

(summation convention not applying here) is appreciable for at least some 
components. The condition for it to be so may be inferred from the equation 

- a __ --aT --az a -  a -  1 apt 
at 3axi a ax, axi ax, P axj 
- ( u ~ T ' ) + ~ ' . u ' . - + u ' . T ' ~ ' + ~ ~ -  (uiT')+- (u;u;T')+-T'- 

- _ _ _  
a2T' azu', 

3 ax; ax: - KU'. _- - vT' 3 ( +further terms if buoyancy forces are significant) = 0. 
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(That this is the constant fluid property form does not matter for the present 
considerations.) This represents the balance of a component of the temperature 
flux (seeEllison 1957, § 6 and, in particular, equations (16) and (19) for an example 
of this). The seventh and eighth terms indicate molecular effects on this balance; 
they are at least partly dissipative, the second, third, and perhaps the buoyancy 
force terms being the corresponding productive ones. Now these two molecular 
terms are closely related to the correlation under consideration, at  least when the 
Prandtl number is near 1, because 

It may be inferred that R is appreciable when the balance of qp plays a role in 
the turbulence comparable with those of kinetic energy and T'2. Thus it is 
appreciable in shear flows with heat transfer but not in grid turbulence with 
uniform mean temperature.] 

Continuing the estimation of the magnitude of C, a little manipulation of the 
various scales in turbulence (Hinze 1959, pp. 185-6), or a consideration of the 
energy balance in a shear flow, gives h2 N 6vlU. Hence 

We compare this with the magnitude of another term in the same equation, 
p[a(u;zc;)/axi] (D, say): D 2: po U2/6;  hence CID 2: EATIT,. Thus for large tempera- 
ture variations in a fluid having a 2: 1, it  is incorrect to suppose that molecular 
terms in a mean equation for turbulent flow are small to the order v/vT (where 
vT is the eddy viscosity), as is the case when fluid properties are constant. 

The reader may well be wondering why this discussion has been given in terms 
of variable viscosity, when it would seem that variation of thermal conductivity 
is a simpler case; for 

__ 

and the second term is analogous to the one considered above without the com- 
plication of the correlation. However, we shall now see that the same effect does 
not occur here. We may make the transformation 

(k, is the value of k at  the reference temperature To), showing that a term involving 
turbulence length scales need not be brought in and that E is of the same order of 
magnitude as when k is constant. 

This conclusion is disguised in (2) by the correlation of k-fluctuations with 
T-fluctuations making IC(a2T/axf) also large in a way that just cancels the effect of 
(dkTdT) (i3T/axi)2. This in turn suggests that, if any other temperature-dependent 
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quantity is a coefficient of azT/ax?, care is againneeded. Consider in this connexion 
the full mean temperature equation 

- aT , a ~ ’  1 a 
axi oxi pc,axi ui-+ui, = (g). (4) 

We may anticipate from the above that, although the temperature variation of 
k does not produce appreciable terms on the right-hand side, that of p does. It is 
seen that this is indeed the case by making the transformation 

Analysis as before shows that the second part of this is small compared with the 
left-hand side of (4) only to the order ATIT, when /3 = -pCpT[d(l/pCp)/dT] is 
of order 1 (p = 1 for a perfect gas). 

It is probably misleading to regard this last result as an occasion whenmolecular 
effects are important in turbulent flow, for the same error in the usual approxima- 
tion may be detected by retaining pC, on the left-hand side of the equation, thus : 

There is then an approximation of order Aplp, in taking the left-hand side of 
(5) asp,C,GJ @/axi) +pOCp<;(aT’/ax2), but very little approximation in dropping 
the right-hand side. The important point is just that it is fallacious to argue that 
the equation can be put in the form (4) and the right-hand side then dropped 
because it is a ‘molecular term’. 

We now return to the velocity equation. The above comments about 
p-variability apply again. But we have already seen that p-variability also has an 
effect; there is no analogue to (3). Intuitively it seems probable that p-variability 
will not come in if the boundary conditions on velocity and temperature are 
similar and if, further, k ( T )  and p ( T )  have similar functional forms. In  general, 
however, it  does come in. It is particularly important to remember this for fluids 
for which the variation of p is more marked than that of p (a  large compared 
with p); water is an important example in which this is strongly so. Then there 
may be an approximation in the velocity equation but little in the temperature 
equation. 

All the preceding discussion has been concerned with the approximation in 

and 

There are further approximations of the order Ap/po in the common practice of 
replacing the second terms by a(u;u;)/ax, and a(u;T‘)/ax . - .~ 
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3. Continuity equation of mean flow 
The continuity equation of mean flow is usually taken in the form 

aui 
axi - = 0. 

It will now be shown that this is a good approximation in turbulent flow of gases 
even when the temperature variations are large-far better than is immediately 
apparent. Physically this means that expansion effects 5hift the mean flow 
streamlines less than in laminar flow (for which azCi/i3x, = 0 is quibe a poor 
approximation). The result is probably most useful for the case of a boundary 
layer on a heated wall-the temperature difference can remain large at  all 
distances downstream-but the treatment here will be general. 

The accurate continuity equation may be written 

aui i ~ p  
axi Dt 
-+--- = 0. 

The second term is similar to the left-hand side of the temperature equation 

and may thus be replaced by one similar to the right-hand side. This is a molecular 
conductivity term and the result of this section derives in essence from the 
unimportance of molecular effects in turbulent flow (it will be seen that the 
exception to this described in 3 2 does not usually arise here). Substitution of 
pT = po To in (7) gives 

1 DP i a  
P Dt P" To c, ax< 
_ _  = 

. "  
and so from (6) 

(C, independent of T) .  

We then obtain, on taking average values, 

F G 

We now consider the order of magnitude of either side of (9): 

F 2: UIL; G 21 KAT/To62. 

(It is possible to think of a form of k ( T )  for which the use of AT as the scale of the 

difference of ST> is unsatisfactory, but such is most unlikely to apply to a real 

fluid. This is, for instance, the correct scale for any power law.) Thus we have 
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G/F 2: ATKL/ToU62. But L2/S2 N ULIv,. (It is because this increase in the 
boundary-layer thickness through an eddy viscosity replacing a molecular one is 
essential to the argument that it does not also apply to laminar flow.) Therefore, 

G AT v 
F -  To PrvT’ 

which will be small even if AT/To is not. The fractional error in putting F = 0, i.e. 
aii,/ax, = 0,  will be correspondingly small. 

The preceding analysis made use of the perfect-gas equation. This should apply 
in most cases of practical importance. However, brief mention may be made of 
what happens if a different equation of state applies; the situation is somewhat 
more complicated, and it may clarify the nature of the analysis to see why. For 
any other equation of state, the equation corresponding to (8) has temperature- 
dependent quantities in the coefficient on the right-hand side. Consequently 
averaging cannot be carried through the differentiation and, in the same way as 
in 3 2, a term involving turbulent length scales comes in. The magnitude of this 
may be estimated as before;? it is of order (AT/To)2 smaller than F ,  which still 
compares favourably with a fractional error of AT/To in laminar flow. The still 
smaller error in the perfect-gas case results from a coincidental cancelling of two 
non-linearities, that in the equation of state and that due to the temperature 
dependence of p in the term pC,(DT/Dt) of the temperature equation. 

Expansion effects may remain important in a laminar sublayer; indeed the 
above argument suggests that, in view of the large gradients, they may be 
particularly serious there even for comparatively small ATIT,. However, 
qualitative prediction of their behaviour might be possible by analogy with flows 
with injection through the wall. 

N ___ 

4. Temperature difference introduced locally into pre-existing turbu- 
lence 

So far it has been supposed that the length scales of the mean velocity and 
temperature fields are the same. This is not so when, as in turbulent-diffusion 
experiments, the heat source is a small element placed in an already turbulent 
flow field. A full analysis for this case of all the aspects considered above is com- 
plicated and, so far as I can see, not very rewarding. However, this is a situation 
in which particularly large errors can arise. We therefore consider one example 
of the way ~ this can happen, by examining the relative sizes of u;(au;/ax,) ( H ,  say) 
and a(ulu;)/axi ( J ,  say), the former being the term neglected in the usual practice 
of taking the latter as the gradient of the stress. If the one is not small compared 
with the other, the supposition that the velocity field is unchanged by the intro- 
duction of the heat source is without justification (although the ratio HIJ may 
overestimate the change; as the temperature difference is increased, the flow 
might adjust itself so that the gradient of the true stress remains constant rather 
than the gradient of ULU;). 

fluctuating quantities (see $1)  is necessary to the argument. 

___ 

__ 

t Though this is a point a t  which the distinction between the scales of mean and 
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This particular example was chosen primarily because it is probably the most 
serious one, but also because it illustrates the way in which the unapproximated 
continuity equation (6)) with the division into mean and fluctuating parts applied 
to both velocity and density, can be used for estimating the magnitude of such 
effects. Equation (6) may be written 

aui ar ar 
axi at axi, 

Ui - - - --_  - 

where r = logp/p, (and thus has Ap/po as its scale and a spatial distribution 
similar to that of temperature). Subtraction of the average of this equation from 
the unaveraged form gives 

__ 
ar - ar' ,ar' arf u!--u - - ui - + u! - au; - art 

axi at taxi axi axi taxi - _ - - _  

and so 

H K L M N 

This can be used for estimating the size of H .  The difference from previous cases is 
brought about by the heat wake having different length scales from the main 
flow; we will call its width 8,. From (10) we get H 2: ApU2/poS,. This is im- 
mediately indicated by the term L.t Furthermore, J 1: U2/6, and so 

H Ap S 
N -- - 

PO ' H '  

which is not necessarily small. As an illustration of the possible effect in an 
experimental set-up, consider S/S, in the region of measurement in Corrsin & 
Uberoi's (1951) work on local heat sources. It is about 10. These authors are not 
explicit about the magnitude of Ap/po, but it seems likely from the temperature 
and size of the source that i t  was somewhere between 0.02 and 0.1. Thus we see 
that H / J  can be quite appreciable. 

A similar analysis may be carried through for the effect of non-zero auklaxi on 
the use of a(u;T')/axi in the temperature equation. However, this is as usual small 
to the order Ap/po; S, is the length scale in all the terms. Diffusion of heat from the 
source is seriously affected only through changes in the mean velocity field. 

~ 
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t The other terms are not so readily estimated, but there is no reason t o  expect either 
that they are any larger or that they just cancel L so as to make H smaller. In point of 
fact, arguments invoking the similarity of these terms to ones appearing in equation (1) 
suggest that K ,  M and N are likely to be of the same order as L. 


